N ov 2 00 4 L p - estimates for Riesz transforms on forms in the Poincaré space

نویسنده

  • Joaquim Bruna
چکیده

Using hyperbolic form convolution with doubly isometry-invariant kernels, the explicit expression of the inverse of the de Rham laplacian ∆ acting on m-forms in the Poincaré space H is found. Also, by means of some estimates for hyperbolic singular integrals, L-estimates for the Riesz transforms ∇i∆−1, i ≤ 2, in a range of p depending on m,n are obtained. Finally, using these, it is shown that ∆ defines topological isomorphisms in a scale of Sobolev spaces H m,p(H ) in case m 6= n±1 2 , n 2 . Mathematics Subject Classification(2000): 53C21, 58J05, 58J50, 58J70

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Riesz transforms through reverse Hölder and Poincaré inequalities

We study the boundedness of Riesz transforms in L for p > 2 on a doubling metric measure space endowed with a gradient operator and an injective, ω-accretive operator L satisfying Davies-Gaffney estimates. If L is non-negative self-adjoint, we show that under a reverse Hölder inequality, the Riesz transform is always bounded on L for p in some interval [2, 2 + ε), and that L gradient estimates ...

متن کامل

1 5 N ov 2 00 7 Dimension free bilinear embedding and Riesz transforms associated with the

We utilize the Bellman function technique to prove a bilinear dimension-free inequality for the Hermite operator. The Bellman technique is applied here to a non-local operator, which at first did not seem to be possible. An indispensable tool in order to make the proofs dimension-free is a certain linear algebra lemma concerning three bilinear forms. As a consequence of our bilinear inequality ...

متن کامل

N ov 2 00 8 Linear dimension - free estimates for the Hermite - Riesz transforms ∗ Oliver Dragičević and Alexander Volberg

We utilize the Bellman function technique to prove a bilinear dimension-free inequality for the Hermite operator. The Bellman technique is applied here to a non-local operator, which at first did not seem to be feasible. As a consequence of our bilinear inequality one proves dimension-free boundedness for the Riesz-Hermite transforms on L with linear growth in terms of p. A feature of the proof...

متن کامل

ar X iv : 0 81 1 . 28 54 v 1 [ m at h . FA ] 1 8 N ov 2 00 8 L p estimates for non smooth bilinear Littlewood - Paley square functions

L p estimates for non smooth bilinear Littlewood-Paley square functions on R. Abstract In this work, some non smooth bilinear analogues of linear Littlewood-Paley square functions on the real line are studied. Mainly we prove boundedness-properties in Lebesgue spaces for them. Let us consider the function φn satisfying c φn(ξ) = 1 [n,n+1] (ξ) and consider the bilinear operator Sn(f, g)(x) := R ...

متن کامل

ar X iv : m at h / 04 11 35 1 v 2 [ m at h . A T ] 1 7 N ov 2 00 4 POINCARÉ SUBMERSIONS

We prove two kinds of fibering theorems for maps X → P , where X and P are Poincaré spaces. The special case of P = S yields a Poincaré duality analogue of the fibering theorem of Browder and Levine.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004